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Abstract. A two-dimensional deterministic fractal model is proposed to imitate the 
geometric texture just below percolation threshold. The model is constructed for bond 
percolation via a rule of bond occupation on the square lattice. It shows the typical 
percolation behaviour as a function of a parameter p ( p  is the bond concentration). The 
model describes the approach towards the threshold below criticality. The critical bond 
concentration pc  and the correlation length exponent Y are found. The scaling property 
of the cluster size distribution is studied below the threshold. The critical concentration 
and critical exponents are shown to agree with those derived from the regular model 
proposed for the geometric texture above the threshold. The scaling relations for the critical 
exponents are shown to be satisfied. 

1. Introduction 

The geometry and statistics of clusters is one of the most important problems in phase 
transitions and critical phenomena. Properties of cluster numbers and structure in 
percolation have been reviewed in Stauffer (1979, 1985). Recently, there has been 
increasing interest in exact mathematical fractals (Mandelbrot 1982, Vicsek 1983, Given 
and Mandelbrot 1983, Ben-Avraham and Havlin 1983, Blumenfeld and Aharony 1985, 
Martin and Keefer 1985). The percolating infinite cluster is one of the most intensively 
studied random fractals (Deutscher eta1 1983, Stauffer 1979,1985, Stanley and Coniglio 
1983, Kirkpatrick 1979, Kapitulnik and Deutscher 1984). Various geometrical models 
have been proposed to imitate the infinite incipient cluster at the percolation threshold. 
Three extreme models for the backbone of the infinite cluster have been presented, 
i.e. the family of Sierpinski gaskets, the ‘links and nodes’ model and the ‘links-nodes- 
blobs’ model (Coniglio 1982, Aharony et a1 1984). Mandelbrot (1984a, b) and Mandel- 
brot and Given (1984) have also presented fractal models for percolation clusters at 
criticality. The Mandelbrot models possess the geometric and topological properties 
very close to the infinite cluster at the percolation threshold but do not describe the 
approach towards the threshold. Nagatani (1985) proposed the regular model to imitate 
the geometric texture just above the threshold. It was found that the typical percolation 
behaviour was successfully reproduced as a function of bond concentration p just 
above the threshold. The critical bond concentration, the correlation length exponent 
and the scaling property of the cluster distribution were found. 

In this paper, we present the regular model for the geometric texture just below 
the threshold. The model has to be consistent with that above the threshold with 
respect to the critical concentration and critical exponents. For later convenience, we 
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summarily explain the model presented for percolation above the threshold. The model 
is constructed by bond deletions. Bonds on the square lattice are recursively deleted 
via two rules. Three construction stages are shown in figure 1 .  Figures l (a ) ,  ( b )  and 
( c )  represent respectively the geometric textures obtained at the first, second and third 
stages. The crosses, triangles and (open and full) squares indicate, respectively, bonds 
deleted at the first, second and third stage. The system obtained at the N stages appears 
to be a superlattice made by nodes separated by a distance of 6 = 3 N ,  connected by 
quasi-linear links. When N is infinitely large, the model is self-similar (fractal) on 
smaller length scales than the connectedness length, but becomes a homogeneous 
square lattice on large length scales. The concentration p of bonds approaches the 
critical value p c  = 3. The connectedness length diverges as 6 - ( p  - p J ”  and v = 
OS/( 1 -log 2/log 3) ( = 1.3547 . . .). The fractal dimension D of the infinite cluster and 
the fractal dimension Db of its backbone are given by D = log 8/log 3 ( = 1.892. . .) 
and D b  = log 6/log 3 ( = 1.630. . .). The exponent, describing the power-law depen- 
dence on scale length L of the conductivity, is given by t /  v = log ?/log 3 ( = 0.9207 . . .). 
For the cluster size distribution n,, one arrives at the scaling form n, - s-‘e( 1 - s/sg) 
with T = 1 +log 9/log 8 ( = 2.056. . .) where st - ( p  -pJYD.  

We shall construct the model to mimic the geometric texture just below the threshold. 
It is necessary that the model be possessed of characteristic properties that the critical 
concentration and critical exponents are consistent with those above the threshold. In 
9 2 the fractal models are constructed to imitate the geometric textures above and 
below the percolation threshold. In 9 3 the fractals are reconstructed to correspond 
to configurations of the bonds on the square lattice. In 94, by use of rules of bond 
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Id 

Figure 1. Three construction stages of the regular model for the geometric texture above 
the threshold; ( a ) ,  ( 6 )  and ( e )  represent respectively the geometric textures, obtained at 
the first stage, the second stage and the third stage. The crosses, triangles and (open and 
full) squares indicate, respectively, bonds deleted at the first, second and third stages. 
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occupations, the model is presented to show the typical percolation behaviour as a 
function of a parameter p ( p  is the bond concentration). The critical concentration 
and the critical exponents for the scaling behaviours are derived. In 4 5 the scaling 
relations for the critical exponents are discussed. Section 6 presents the summary. 

2. Fractals above and below the threshold 

We construct the fractal models to imitate the geometric textures just above and below 
the threshold. It is necessary that models be self-similar (fractal) on smaller length 
scales than the connectedness length but become homogeneous on large length scales. 

In general, every lattice bond has three choices in the bond percolation: it can be 
empty, with probability 1 - p ;  it can be part of the infinite network of occupied bonds, 
with probability pPa (P, is the percolation probability) or it can be part of one of the 
many finite clusters, wth probability p (  1 - Pa), Since each s cluster contains exactly 
s bonds, the probability of any lattice bond belonging to an s cluster is P, = sn, ( n ,  is 
the number of s clusters divided by the total number of lattice bonds). The sum of 
all these probabilities equals unity. Then P, vanishes below the threshold p c  and is 
non-zero above p c .  As the concentration p approaches the threshold p c ,  the pair 
connectedness length 6 diverges, 6 - I p c  - p  I-”. The percolation probability P, just 
above the threshold and the cluster size distribution n, just above and just below the 
threshold show the following scaling behaviour (Stauffer 1979, 1985): 

P a - ( p - p J P  and n , - s - ‘  

Fractal models, reflecting the above characteristic features of cluster numbers and 
structure, are constructed by use of the initiators and the generator shown by figures 
2 ( a ) ,  ( b )  and (c ) .  Figures 2 ( a )  and ( b )  indicate the initiators for the geometric textures 
just above and just below the threshold. The length of the links (or lines) is of the 
order of the connectedness length 6. The generator in figure 2( c )  has the disconnected 
portion, compared with the initiator for the infinite cluster presented by Mandelbrot 
and Given (1984) (see figure 2 ( d ) ) .  The generator includes a connected line of eight 
links, joining the endpoints of the interval. This portion is called the ‘coastline 
generator’ in accord with the Mandelbrot-Koch curve. The remaining one link forms 
a portion that seeds new islands and is called the ‘island generator’. This splits into 
pieces to build up finite clusters for percolation. The first two construction stages of 
the fractals are respectively indicated by figures 3(a)  and ( b )  for the geometric textures 
above and below the threshold. Above the threshold, the system obtained at the N 
stages appears to be a superlattice made by nodes separated by a distance of 6 = 3 N ,  

I l l  
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Figure 2. Initiators and generators of fractals for the geometric textures in percolation; 
( a )  and ( b )  indicate the initiators for geometries just above and below the threshold; ( c )  
shows the generator for the geometric textures; ( d )  represents the Mandelbrot-Koch curve, 
being the generator for infinite cluster. 
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Figure 3. The first two construction stages of the fractals for the geometric textures ( a )  
above and ( b )  below the threshold. 

connected by quasi-linear links. We obtain the square lattice with self-similar structures 
on smaller length scales than the connectedness length 6 = 3 N. This corresponds to 
the percolating network. Islands, separated from the percolating network, correspond 
to finite clusters. The fractal dimension D of the infinite cluster and  the fractal 
dimension D b  of its backbone are respectively given by D = l o g 8 / l o g 3  and D b =  

log 6/log 3. The cluster size distribution consists of a sum of delta functions: 

By spreading the delta functions over the interval and taking into account that s - (3D)k, 
one can arrive at the scaling form 

(2)  n, - s-'O( 1 - s/s<) 

with T = 1 +log 9/log 8 = 1 + d / D  where s6 - ( 3 D ) N  

3. Geometry as a function of the bond concentration 

We reconstruct the fractals to correspond to configurations of the bonds on the square 
lattice. The models are presented to show the typical percolation behaviour as a 
function of the bond concentration p .  For the geometric texture just above the threshold, 
bonds on the square lattice are recursively deleted via a rule. On the other hand, for 
the geometric texture just below the threshold, bonds are recursively occupied via a 
rule. The models, constructed by the bond deletions and bond occupations, present 
the geometric textures as a function of the bond concentration p .  Thus, one can describe 
the approaches towards the threshold. One can obtain the regular models to show 
the typical percolation behaviour as a function of a parameter p .  The first three stages 
of constructions, for the geometric textures above and  below the threshold, are shown 
by figure 1 (where the bonds indicated by full squares are occupied) and figure 4. 
Figure 1 has been explained in the introduction, except that the bonds marked by full 
squares are occupied. The concentration of bonds occupied after the N t h  stage via 
the first rule of bond deletions, is given by 



A regular model for cluster numbers and structure 965 

'Figure 4. The correspondence of the fractal geometry, shown by figure 3 ( 6 ) ,  with configur- 
ations of the bonds on the square lattice; ( a ) ,  ( b )  and (c)  indicate respectively the geometric 
textures below the threshold, obtained at the first, second and third stages of construction. 
They show the geometry as a function of the bond concentration. 

When N is infinitely large, the concentration p approaches the critical value pc:  

p c  = lim p (  N) = %( = 0.611 . . .). 
N + x  

(4) 

The connectedness length diverges as 

5 - ( P  - P C ) P 2 .  ( 5 )  

Figures 4 ( a ) ,  ( b )  and (c )  indicate respectively the geometric textures below the 
threshold obtained at the first, second and third stages of construction. The concentra- 
tion of bonds after the Nth stage is given by 

The critical concentration and the connectedness length are obtained from the approach 
below the threshold: 

p c  = and 5 - ( p c  - P ) - " ~ .  ( 7 )  

The critical concentration p c  and the correlation length exponent Y have the same 
values above and below the threshold. Thus we obtain the regular models as a function 
of bond concentration p to describe the approaches towards the threshold above and 
below p c .  

These models are a poor approximation for the correlation length exponent. In 
order to improve the exponent v, we introduced the second rule of bond deletions for 
the geometric texture above the threshold. The second rule was summarised as follows: 
bonds into the islands separated from the percolating network are furthermore deleted 
recursively (Nagatani 1985). The full squares in figure 1 represent bonds deleted at the 
third stage by the second rule of bond deletions. One can obtain the improved values 
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p c  =: ( = 0.6) and v = OS/( 1 -log 2/log 3) ( = 1.3547 . . .). We shall construct the model 
below the threshold to be possessed of characteristic properties such that the critical 
concentration and critical exponents are consistent with those above the threshold. In 
the following section the model for the geometric texture below the threshold is 
constructed via the two rules of bond occupations. 

4. The regular model just below the threshold 

Now we try to imitate bond percolation with the help of a regular construction. The 
regular model is constructed by the following bond occupations. Bonds on the square 
lattice are recursively occupied via two rules. First we apply the first rule of the bond 
occupation. Bonds are occupied at the Nth stage such that squares with the edges of 
3 N - '  length are periodically constructed with the period 2 x 3N. The positions ( i ,  j) 
of the square-centres satisfy the relations 

cos( ni l3  

c 0 s ( n i / 3 ~  - 1 ~ / 2 ) = c o s ( n j / 3 ~  - 5 n / 6 ) =  1 

c o ~ ( r r i / 3 ~ + ~ / 6 ) = c o ~ ( n j / 3 ~  -n/2)= 1 

c 0 s ( n i / 3 ~  + 5 n / 6 )  = c 0 s ( n j / 3 ~  -n/2) = 1 

cos( ni l3  + n/2) = cos( nj/3 + n/6) = 1 

cos( n i l3  + 7712) = cos( nj/3 + 5 4 6 )  = 1 

cos( n i l3  - n / 6 )  = cos( nj/3 + n/2)  = 1 

c 0 s ( n i / 3 ~  - 5 n / 6 ) = ~ 0 s ( r r j / 3 ~ + 7 ~ / 2 ) =  1.  

- n/2) = cos( nj/3 - 7 1 6 )  = 1 

Figure 5 indicates the configuration of the squares within the unit period. Secondly, 
we apply the second rule of bond occupation to the resultant lattice. This rule works 

Figure 5. Bond occupations at the Nth  stage by the first rule. Squares with the edges of 
3N-I length are periodically constructed with the period 2 x 3". The configuration of the 
squares within the unit period is represented. When the origin i s  placed at the point 
indicated by the cross, the positions ( i ,  j )  of the square-centres are respectively given by 

3 N / 2 ) ,  ( 5 ) :  ( - 3 N / 2 ,  - 3 N - 1 / 2 ) ,  ( 6 ) :  ( - 3 " / 2 ,  ( - 5 x 3 " - ' / 2 ) ) ,  (7): ( 3 " - ' / 2 ,  - 3 y / 2 )  and 
( 1 ) :  ( 3 N / 2 ,  3 N - ' / 2 ) ,  ( 2 ) :  ( 3 N / 2 ,  ( 5 x 3 N - 1 / 2 ) ) ,  ( 3 ) :  ( - 3 N - 1 / 2 ,  3 " / 2 ) ,  (4): ( - 5 x 3 " - ' / 2 ,  

( 8 ) :  ( 5 ~ 3 ~ - ' / 2 ,  - 3 N / 2 ) .  
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at stages larger than N = 2 .  The second rule is summarised as follows: bonds are 
occupied such that the internal structure of the resultant squares, constructed by the 
first rule, is self-similar with the sufficiently large N. Three construction stages of our 
regular model are shown in figure 6 .  Figures 6 ( a ) ,  ( b )  and ( c )  represent the lattices 
constructed at the first, second and third stages respectively. The full circles in figure 
6( c) indicate bonds occupied by the second rule at the third stage ( N  = 3). Figure 7 
shows the construction of a finite cluster from the square with edges of the 33 length 
by means of the second rule of bond occupation at the fourth stage ( N  = 4). Bonds 
marked by full circles indicate those occupied by the second rule where a part (one 
edge) of the square is shown. In this manner, finite clusters are generated by use of 
the rules of bond occupation. The finite clusters are shown in figure 8. It is found 
that a large cluster is the fractal with the initiator of square and the generator of the 
Mandelbrot-Koch curve. The concentration c(  N )  of bonds, occupied at the Nth stage 

( a )  ( h i  ( C )  

Figure 6. Three construction stages of the regular model; (PI), (b)  and ( c )  represent the 
lattices constructed at the first, second and third stages respectively. The full circles in ( c )  
indicate bonds occupied by the second rule. 

Figure 7. The construction of a finite cluster from the square with edges of the 3' length 
by means of the second rule of bond occupation at the fourth stage ( N  = 4). Bonds marked 
by full circles indicate those occupied by the second rule where a part (one edge) of the 
square is shown. The finite cluster on the right-hand side generates. 
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Figure 8. The finite clusters generated by the bond occupation. Finite clusters shown in 
( a ) ,  (6 )  and (c )  represent, respectively, those generated at the first, second and third stages. 
A large cluster is the fractal with the initiator of square and generator of the Mandelbrot- 
Koch curve. 

via the two rules of bond occupation, is given by 

~ ( N ) = 8 / 9 ~  +(4 /9N)(4N-1/3  -!) (9) 
where c( 1 )  = $ and c(2) = 8/9*. 

The concentration p ( N )  of bonds after N stages is given by 

When N is infinitely large, the concentration p approaches the critical value pc:  

pc  = lim p (  N )  = 2( = 0.6). ( 1 1 )  
N -ic 

The pair connectedness length 5 is given by 
5 - 3N-1 

We obtain 

(13) SP( p c  - p (  N ) )  - ( $ ) N  - 5 - 2 ‘ 1  - ‘og*/ ’os3)  

The connectedness length diverges as 

5 - ( p , - p ) - ”  and v=0.5/(1 -log2/log3)( = 1.3547..  .). (14) 

The critical concentration p c  and the correlation length exponent v have the same 
values above and below the threshold. Thus we obtain the regular model below p c ,  
consistent with that above p c .  The value for the correlation length exponent agrees 
with that derived in a completely different fashion by Klein er a1 (1978) and was then 
thought to be perhaps exact. In order to obtain the cluster size distribution, one should 
note that the largest cluster generated in the kth stage of the process of bond occupations 
contains s( k )  - 8k  bonds. For s < ( 3 D ) N  the cluster size distribution consists of a sum 
of delta functions: 

n , -  k = 1  f ( i lk (  1 - * ; ~ k ~ ( d ) “ ) s ( s - ( 3 ” ) k ) ) s ( l - ~ / ( 3 ” ) N ) .  n = l  (15) 
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Table 1. List of the physical and geometric properties determined analytically by our 
regular model, compared with other sources. 

P C  v 7 U D D, 

3 OS/( 1 -log3 2) 1 +log, 9 (1 -log, 2)/0.5 log, 8 log3 8 log3 6 
5 

(0.6) (1.354) (2.056) (0.389) (1.892) (1.630) 
0.5" 9 2.05" 0.39' 1.90b 1.62' 

s a  
48 

Stauffer (1985). 
Kapitulnik and Deutscher (1984). 
Herrmann and Stanley (1984). 

By spreading the delta functions over the interval we obtain 

n,-s-'8(1-s/sS) (16) 

with ~ = l + l o g 9 / l o g 8  where ~ ~ - ( 3 ~ ) ~ - ( p ~ - p ) - " ~ ,  so l / u = v D  is obtained. 
Table 1 lists the geometric and physical properties, determined analytically by our 

regular model. In table 1, the second line shows estimated scaling exponents for the 
two-dimensional (random) percolation to compare our results more completely with 
those of random percolation. The scaling exponents obtained below the threshold are 
in agreement with those above the threshold (Nagatani 1985). 

5. Scaling relations 

We will show that all the conventional scaling relations between the critical exponents 
are satisfied in this construction. Our scaling form for the cluster numbers (16) is 
consistent with the conventional scaling assumption 

= S-'f{(P - p c ) s 0 ) .  (17 )  

The scaling relations between critical exponents, derived from the scaling form (17), 
are satisfied with our model: 

(18) p =(7--2)/u y = (3 - r ) / u  ( 2  - (Y ) = ( 7 - 1 )/ (T. 

We obtain the scaling form for the radius of cluster (Stauffer 1985): 

R, - spe{c+ ( p  -p , )s ' )  (19) 

where p = 1/D. 
The following scaling relations are derived from (19): 

p = u v  and dv=(T- l ) /u .  (20) 

All the conventional scaling relations between the critical exponents for cluster numbers 
and structure are satisfied in this model. 

6. Summary 

We summarise that the geometric texture just below percolation threshold can be 
imitated by the regular model. The most important feature of the regular model is 
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that it is possible to obtain explicit expressions for the quantities characterising the 
approach towards the percolation threshold. The model shows the typical percolation 
behaviour as a function of the bond concentration p .  The other important feature of 
the regular model is that it is possible to obtain explicit expressions for the quantities 
characterising the statistics of clusters defined in percolation. The regular construction 
of percolation, simulating the scaling properties, is shown to be possessed of characteris- 
tic properties of cluster numbers and structure below the threshold. All the conventional 
scaling relations between critical exponents are satisfied in this construction. Our 
critical exponents are very close to the exact ones. 
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